Protected Image

不定积分的公式是什么(不定积分基本公式)

2024-08-13 11:11:43 娱乐生活 bianji01

 

不定积分的公式是什么

不定积分也被称为反导数或原函数,是微积分的一个重要部分。它的基本概念是求导数的反向过程,通常可分为基本不定积分与一般不定积分两部分。基本不定积分的内容是求解基本初等函数的不定积分,而一般不定积分则采用换元法、分部积分法等方法。下面我们将详细解析不定积分的基本公式。

1)基本不定积分公式:

∫dx=x+C

∫xdx=1/2 x²+C

∫xⁿ dx=1/(n+1) xⁿ⁺¹+C (n≠-1)

∫(1/x) dx=ln|x|+C

∫eˣ dx=eˣ+C

∫aˣ dx=1/lna aˣ+C

∫sinx dx=-cosx+C

∫cosx dx=sinx+C

∫tanx dx=-ln|cosx|+C 或 ln|secx|+C

∫cotx dx=ln|sinx|+C

∫secx dx=ln|secx+tanx|+C

∫cscx dx=-ln|cscx+cotx|+C

在这些公式中,x表示自变量,C表示常数。

2)一般不定积分公式:

除了基本公式,还有许多常用的一般不定积分公式,如适当使用换元法、分拆并列法对一些复杂函数进行积分。例如,

∫sin(ax+b)dx=-1/a*cos(ax+b)+C

∫cos(ax+b)dx=1/a*sin(ax+b)+C

∫e^(ax+b)dx=1/a*e^(ax+b)+C

微积分是数学中的关键基础,掌握了不定积分的公式,可以帮助我们理解和解决许多实际问题,如物理、工程、经济、生物等等领域的问题。

在使用这些公式时,需要记住,不定积分依赖于一组可能的解,每个解都由一个常数C表示,这就是不定性的来源。

了解了这些公式之后,让我们以一幅图像更加深入地理解不定积分。下图是不定积分的一个示例,表达了不定积分的基本概念和一些基本公式。

不定积分基本公式

不定积分基本公式如下:

3、积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c)

(a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。

解释

编辑?播报

根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。

一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

不定积分分部积分法公式是什么?

不定积分分部积分法公式是Sudv=uvSvdu。

不定积分的分部积分法为Sudv=uvSvdu。由于积分号是英文字母S的拉长,为了手机编辑方便,这里我用大写英文字母S表示积分号。之所以积分号用英文字母S的拉长来表示,主要是因为S是英文单词Sum的首字母。

不定积分分部积分法介绍:

不定积分分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结果的积分形式的。

常用的分部积分的根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。

一般地,从要求的积分式中将凑成dv是容易的,但通常有原则可依,也就是说不当的分部变换不仅不会使被积分式得到精简,而且可能会更麻烦。

分部积分法最重要之处就在于准确地选取dv,因为一旦dv确定,则公式中右边第二项中的du也随之确定,但为了使式子得到精简,如何选取dv则要依du的复杂程度决定。

也就是说,选取的dv一定要使du比之前的形式更简单或更有利于求得积分。依照经验,可以得到下面四种典型的模式。记忆模式口诀:反对幂三指。

以上内容就是易趣百科为大家带来不定积分的公式是什么的全部内容,希望会对大家有所帮助,更多相关内容请关注易趣百科

声明:易趣百科所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系315127732@qq.com
横幅广告*1290*60