股票量化编程(股票量化编程怎么操作)

2023-11-18 04:07:26 数码极客 bianji01

 

如何建立一个股票量化交易模型并仿真?

用python:金融想法->数据处理->模型回测->模拟交易->业绩归因->模型修正。

量化交易是指以先进的数学模型替代人为的主观判断,利用计算机技术从庞大的历史数据中海选能带来超额收益的多种“大概率”事件以制定策略,极大地减少了投资者情绪波动的影响,避免在市场极度狂热或悲观的情况下作出非理性的投资决策

量化交易具有以下几个方面的特点:

1、纪律性。根据模型的运行结果进行决策,而不是凭感觉。纪律性既可以克制人性中贪婪、恐惧和侥幸心理等弱点,也可以克服认知偏差,且可跟踪。

2、系统性。具体表现为“三多”。一是多层次,包括在大类资产配置、行业选择、精选具体资产三个层次上都有模型;二是多角度,定量投资的核心思想包括宏观周期、市场结构、估值、成长、盈利质量、分析师盈利预测、市场情绪等多个角度;三是多数据,即对海量数据的处理。

3、套利思想。定量投资通过全面、系统性的扫描捕捉错误定价、错误估值带来的机会,从而发现估值洼地,并通过买入低估资产、卖出高估资产而获利。

4、概率取胜。一是定量投资不断从历史数据中挖掘有望重复的规律并加以利用;二是依靠组合资产取胜,而不是单个资产取胜。

如何建立一个股票量化交易模型并仿真? ?

量化交易主要有哪些经典的策略

(1)股票、基本面、新闻消息之间的关系不停变化记得2009年美股到达低点的时候,很多“低质”公司的回报大大高于“优质”公司的回报。很多3块钱的“垃圾股”可以在很短时间内涨到10块钱,而高价的优质公司的股票想要翻一倍都要花上很久很久。而在另一段时间跨度或者另一个市场里,可能又是另一番情景。所以跨市场、长期有效的量化交易系统极少甚至可以说没有。(2)有些关键信息并不容易量化微博是市场突发消息和传闻的最大出处,所有投资者都不会无视这里传出的讯息。但是这里的消息格式往往不规范,语法也千奇百怪,你无法让计算机程序挑选出有效信息并运用于自动交易中。(3)过去并不代表未来多数时候,通过历史数据测试可以证明的你的设计交易策略在过去的表现,这是量化交易世界中非常重要的一块内容。不过并不是所有人都能意识到,过去不代表未来。这意味着一些交易策略在过去表现的很好,但是在未来可能会带来巨大的亏损

声明:易趣百科所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系315127732@qq.com
广告位招租
横幅广告